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ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium whose only
natural host is humans. Although presenting as asymptomatic in most women, geni-
tal tract chlamydial infections are a leading cause of pelvic inflammatory disease,
tubal factor infertility, and ectopic pregnancy. C. trachomatis has evolved successful
mechanisms to avoid destruction by autophagy and the host immune system and
persist within host epithelial cells. The intracellular form of this organism, the reticu-
late body, can enter into a persistent nonreplicative but viable state under unfavor-
able conditions. The infectious form of the organism, the elementary body, is again
generated when the immune attack subsides. In its persistent form, C. trachomatis
ceases to produce its major structural and membrane components, but synthesis of
its 60-kDa heat shock protein (hsp60) is greatly upregulated and released from the
cell. The immune response to hsp60, perhaps exacerbated by repeated cycles of
productive infection and persistence, may promote damage to fallopian tube epithe-
lial cells, scar formation, and tubal occlusion. The chlamydial and human hsp60 pro-
teins are very similar, and hsp60 is one of the first proteins produced by newly
formed embryos. Thus, the development of immunity to epitopes in the chlamydial
hsp60 that are also present in the corresponding human hsp60 may increase sus-
ceptibility to pregnancy failure in infected women. Delineation of host factors that
increase the likelihood that C. trachomatis will avoid immune destruction and sur-
vive within host epithelial cells and utilization of this knowledge to design individu-
alized preventative and treatment protocols are needed to more effectively combat
infections by this persistent pathogen.

KEYWORDS Chlamydia trachomatis, heat shock protein, infertility, persistence, tubal
occlusion

Chlamydia trachomatis is a Gram-negative obligate intracellular bacterium. Humans
are its exclusive natural host. Different chlamydial serovars are the major etiological

agents of preventable blindness (serovars A to C), the most common bacterial sexually
transmitted infections worldwide (serovars D to K), and lymphatic system infections
(serovars L1 to L3). A distinctive feature of C. trachomatis, especially in the female
genital tract, is that the majority of infected women remain asymptomatic and,
therefore, do not seek treatment. In a subset of women, C. trachomatis is able to avoid
destruction by the host’s innate and adaptive immune systems, and by autophagy, it
migrates to the upper genital tract and establishes a chronic infection. It has been
suggested that without treatment, up to 50% of infected women continue to be
infected for greater than 1 year (1). Prolonged exposure of the fallopian tube epithe-
lium to C. trachomatis, or to antigens released by this microorganism, may lead to
scarring and disruption of tubal integrity. A chlamydial upper genital tract infection is
the leading cause of tubal factor infertility and, should conception occur, increased
susceptibility to ectopic pregnancy, as well as premature pregnancy termination. Other
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consequences of an upper genital tract infection in women include pelvic inflammatory
disease, endometritis, and perihepatitis. In this review, we describe the unique attri-
butes of C. trachomatis that contribute to its success as an intracellular pathogen of the
female genital tract, delineate the host factors that influence consequences following
an initial exposure to this organism, and highlight potential areas for future research.

C. TRACHOMATIS LIFE CYCLE

The distinct developmental cycle of C. trachomatis consists of two phases. The
infectious extracellular form is called the elementary body (EB). Historically character-
ized as being metabolically inert, recent studies have identified active biosynthesis and
metabolism within the EBs (2). Whether present in semen from an infected male partner
or released from infected female genital tract epithelial cells, the EBs initially bind to
heparin sulfate proteoglycans on epithelial cells, followed by interaction with a seem-
ingly wide variety of cell surface receptors: mannose receptor, mannose-6-phosphate
receptor, epidermal growth factor receptor, fibroblast growth factor receptor, platelet-
derived growth factor receptor, ephrin receptor A2, protein disulfide isomerase, and �1
integrin (3). This is followed by chlamydia-induced actin remodeling that facilitates
entry of the microorganism into the cytoplasm (4). The EBs become internalized into
endocytic vacuoles, which then combine to form an intracytoplasmic inclusion (5).
Within this structure, the EBs transform into the noninfectious replicative form of the
organism called the reticulate body (RB). The RB utilizes nutrients within the host
cytoplasm and replicates by binary fission. When the RB-filled inclusion reaches a
critical volume, coinciding with a decreasing pool of nutrients and ATP, the conversion
of RBs back to EBs occurs (6). The EBs are released into the extracellular milieu by one
of two mechanisms, host cell lysis or extrusion of the cytoplasmic inclusion (7). The
released EBs attach to adjacent epithelial cells where they initiate another round of
infection (8, 9).

AUTOPHAGY

Autophagy is a physiological process operative within most cells that has two basic
interrelated functions. It maintains a sufficient pool of nutrients within a cell to maintain
physiological activities, and it sequesters and removes from the cytoplasm compounds
and structures that interfere with the maintenance of cell homeostasis: defective
mitochondria, inflammasomes, protein aggregates, and intracellular bacteria or viruses.
The unwanted components are sequestered within a structure called an autophago-
some, which then fuses with a lysosome, and the contents are degraded by lysosomal
enzymes. The amino acid, carbohydrate, nucleic acid, and lipid components are re-
turned to the cytoplasm for reutilization by the cell (10). Under terminally adverse
conditions, autophagy may also initiate a form of programmed cell death (11).

The relationship between C. trachomatis and autophagy is complex. Discordant
results have been reported by investigators utilizing different experimental conditions,
chlamydial serovars, and cell lines (12–16). The chlamydial inclusion in epithelial cells is
not sequestered within autophagosomes, nor does it fuse with lysosomes, and so the
microorganisms evade autophagy-mediated destruction (12). However, since the rep-
licating RBs require a constant supply of host nutrients, it is reasonable to assume that
autophagy must be maintained in the infected epithelial cell to ensure the continued
availability of precursor components. The in vitro replication of chlamydial serovar L2
was shown to be blocked by the addition of autophagy inhibitors (12). In a subsequent
investigation, the infection of mouse embryo fibroblasts by serovar L2 was associated
with an upregulation in the production of autophagy-related proteins (13). We have
evaluated the association between a functional single nucleotide polymorphism
(rs2241880) in a gene (ATG16L1) that codes for an essential autophagosome compo-
nent and the detection of a C. trachomatis infection in pregnant women. Carriage of the
variant allele that is associated with a significantly reduced capacity for autophagy was
identified in 30.9% of 188 women who were negative for IgG antibody to C. tracho-
matis, as opposed to 20.4% of 28 women who were chlamydial antibody positive (A.
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Jayaram, S. Inglis, and S. S. Witkin, unpublished data). This is consistent with the
above-mentioned in vitro data that an increased capacity for autophagy (i.e., absence
of the polymorphic allele) is associated with an elevated occurrence of a productive
chlamydial infection. It remains to be determined whether a genetically determined
reduced capacity for autophagy at other loci also lowers susceptibility to contracting a
chlamydial infection. It would also be of interest to determine if the introduction of
autophagy inhibitors may be a useful addition to traditional antichlamydial antibiotic
therapy.

IMMUNE RESPONSE TO INFECTION

The presence of chlamydial EBs in the extracellular environment is readily recog-
nized by components of the innate immune system (17). Toll-like receptors (TLRs) on all
components of the innate immune system, including phagocytic cells and epithelial
cells, especially TLR 2 and TLR 4, bind to pathogen-associated molecular patterns
(PAMPs) on the surface of EBs and initiate the release of proinflammatory cytokines, as
well as chemokines that attract immune cells to the site of infection (18). Following its
invasion of the host cell cytoplasm, PAMPs on the newly incorporated EB are also
recognized by the cytoplasmic pattern recognition receptor, nucleotide-binding oli-
gomerization domain protein 1 (NOD1), resulting in additional proinflammatory gene
activation (19). The phagocytosis of C. trachomatis and the subsequent expression of
discrete antigens on the cell surface lead to T and B lymphocyte activation and the
generation of chlamydial antigen-specific cell-mediated and humoral immunity (20). In
a proportion of infected women, some organisms migrate to the uterus and fallopian
tubes, where they utilize their unique characteristics to initiate a chronic infection. It
should be noted that the immune responses that protect women against a C. tracho-
matis genital tract infection and prevent migration to the upper genital tract may not
parallel findings from animal models and, thus, remain incompletely elucidated (21).

The contributing factors to chlamydial evasion of immune destruction are beginning
to be defined. One major mechanism appears to be the chlamydia-directed production
of multiple proteases. The best studied is a novel serine protease, chlamydial proteasome/
protease-like activity factor (CPAF) (22). Multiple activities have been described for this
enzyme that, in toto, inhibit antichlamydial immunity (23). CPAF degrades nuclear
factor-kappa B (NF-�B), as well as other transcription factors that initiate production of
multiple proinflammatory mediators. Degradation of the transcription factors RFX5 and
USF-1 by CPAF inhibits the expression of major histocompatibility complex (MHC) class
I and class II molecules, which are necessary for immune recognition of chlamydial
antigens. C. trachomatis-infected cells may also inhibit MHC expression by induction of
beta interferon (IFN-�), an inhibitor of IFN-�-inducible MHC class II production (24). The
inhibition of apoptosis in chlamydia-infected cells is another mechanism that promotes
the survival of this pathogen (25). Recent research suggests the participation of
additional factors in chlamydial evasion of immune-mediated destruction (26).

C. TRACHOMATIS PERSISTENCE

A major component of the antichlamydial immune response, and the factor that has
received the most research attention, is gamma interferon (IFN-�) (27, 28). C. tracho-
matis is unable to synthesize tryptophan and must obtain this essential amino acid
from its host (29). IFN-� induces the production of indoleamine-2,3-dioxygenase 1
(IDO1), the enzyme that degrades tryptophan; thereby, the presence of this enzyme
inhibits the growth of chlamydial RBs (30). The consequences of tryptophan starvation
for C. trachomatis are 2-fold: the RBs may die and the infection is cleared, or the RBs
may substantially alter their gene transcription and metabolism and enter into what is
known as a persistent state (31, 32). The RBs cease to divide but remain viable. The
synthesis of structural and membrane proteins and lipopolysaccharide ceases while
production of the stress-inducible chlamydial 60-kDa heat shock protein (hsp60) be-
comes greatly upregulated. When the extracellular chlamydial infection is cleared and
IFN-� is no longer being induced, the host pool of tryptophan increases, and this amino
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acid again becomes available to the RB. The persistent state is reversed, and RB
replication resumes (33, 34). Thus, C. trachomatis that has entered into its intracellular
RB developmental stage has developed a survival mechanism that promotes its per-
sistence in the face of immune attack. Individual variations in the ease of IFN-�
induction and the extent of its production in response to specific infections may
determine which of the two mechanisms predominates. We have demonstrated that
women positive for a single nucleotide polymorphism associated with elevated IFN-�
production (rs2430561) had a lower likelihood of having a C. trachomatis cervical
infection than did women who were negative for this variant allele (35). Thus, the
extent of IFN-� production in individual women most likely also influences the likeli-
hood of chlamydial survival.

A second IFN-�-IDO1-related chlamydial survival mechanism has recently been
elucidated (36). C. trachomatis serovars that infect the genital tract, but not serovars
that infect epithelial cells in the eye, possess a gene, trpBA, that converts indole to
tryptophan (37). Thus, the presence of indole in the genital tract may facilitate chla-
mydial survival despite IFN-�-induced tryptophan depletion. Lactobacilli dominate the
vaginal microbiome in the majority of reproductive-age women (38), but not in any
other mammal, including nonhuman primates (39, 40). The evolution of Lactobacillus
dominance in humans may have been a response to the unique sexual behavior of
humans and the need to prevent genital tract infections that interfere with fertility and
pregnancy (40). Lactobacilli kill vaginal pathogens, including C. trachomatis (41). Indole
is not present in genital tract secretions when lactobacilli predominate. However, when
non-lactobacilli are numerically dominant, as occurs in the common condition known
as bacterial vaginosis (42), indole can be readily detected (28, 43). In addition, recent
evidence has reported the existence of microorganisms in the uterus and fallopian
tubes of apparently healthy asymptomatic women (44, 45). Thus, the dogma that the
upper genital tract is sterile may be incorrect, and variations in the composition of the
microbiota at these sites in individual women may also influence the ability of C.
trachomatis to survive host immune system activation and persist. However, the validity
of reports that detected bacteria in presumably “sterile” regions of the female genital
tract has very recently been questioned (46). The likelihood of bacterial colonization
and its relationship to the consequences of a chlamydial infection clearly need further
investigation.

Additional factors contribute to chlamydial survival and persistence. For example,
concurrent infections involving C. trachomatis and herpes simplex virus are not un-
common. There is evidence suggesting that in the presence of a herpesvirus infection,
C. trachomatis RBs are induced to enter into a persistent state (47). Thus, any alteration
in the host that leads to transient immunosuppression and reactivation of a latent
herpesvirus infection will also influence the course and consequences of a chlamydial
infection.

Host genetic variation in is another factor that influences the consequences of a C.
trachomatis genital tract infection. Mannose-binding lectin (MBL) is a component of the
innate immune system present in female genital tract secretions. It is a lectin and binds
to carbohydrate residues on microbial surfaces. Microorganisms with surface-bound
MBL are destroyed by either complement-mediated lysis or phagocytosis by cells
possessing cell surface MBL receptors (48, 49). Glycoproteins on the C. trachomatis
surface bind MBL, and this interaction inhibits infectivity in vitro (50). We have shown
that a polymorphism at codon 54 in the mbl2 gene (rs17287498) is associated with
reduced MBL levels and an increased prevalence of C. trachomatis-mediated fallopian
tube damage in Hungarian women who were positive for chlamydial antibodies (51).
We have now verified this association in a Brazilian population (I. M. Linhares and S. S.
Witkin, unpublished data).

The persistence of Chlamydia in in vitro culture has also been documented to be
induced by the restriction of iron (52), as well as in the presence of several antibiotics
(53). The involvement of these factors in persistence in the female genital tract remains
to be established.
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Many questions remain as to why some women are more vulnerable to the
consequences of a C. trachomatis infection than are other women. The rates of
development of pelvic inflammatory disease in women in the general population
following a chlamydial infection appear to be low (54). An area for future studies could
be the identification of additional gene polymorphisms that increase susceptibility to
chlamydial persistence in some women and increased attention to the prevention of
infection and early detection and treatment in this subgroup.

THE C. TRACHOMATIS 60-kDa HEAT SHOCK PROTEIN

When a cell, either a prokaryote or a eukaryote, is under physiological stress, the
synthesis of a class of proteins known as heat shock proteins is rapidly upregulated.
These proteins, highly conserved throughout evolution, aid survival by preventing
protein misfolding or denaturation and facilitating the removal of terminally denatured
proteins (55). As mentioned above, C. trachomatis is able to survive despite host
humoral and cellular immune responses due, in part, to its ability to enter into a viable
nonreplicative persistent state (32, 34). These persistent forms of RBs are under phys-
iological stress, upregulate their expression of hsp60, and release this protein into the
extracellular milieu (31). hsp60 is a highly conserved protein, and the eukaryote and
prokaryote proteins share numerous amino acid sequences (56, 57). A consequence of
shared antigenic epitopes is that an immune response to the bacterial hsp60 can result
in the induction of autoantibodies to eukaryotic hsp60 (58).

Specific regions of homology with the chlamydial and human hsp60 proteins have
been described (59). Sera from eight women who had an ectopic pregnancy and were
positive for antibodies to C. trachomatis were evaluated for reactivity to 12-mer
synthetic peptides that spanned the entire chlamydial hsp60 sequence. Reactivity to 13
epitopes was detected and the sequences of the epitopes compared to regions of the
human hsp60; seven cross-reactive epitopes were identified. This established that sera
from women with chlamydia-associated tubal damage were positive for antibodies that
recognized the human hsp60. A subsequent study evaluated the lymphocyte prolifer-
ative response to five epitopes (amino acids 49 to 58, 85 to 96, 144 to 153, 275 to 283,
and 291 to 298) that were conserved between the chlamydial and human hsp60 (60).
Proliferative responses to two of these epitopes, regions 275 to 283 and 291 to 298,
were identified in five of 10 women with recurrent pelvic inflammatory disease, one of
nine women with a first episode of this disorder, and in 0 of 32 healthy control women.
Interestingly, amino acid sequences homologous to these two epitopes are also present
in hsp60 produced by Escherichia coli (61) and species of Mycobacterium (62). Thus,
following sensitization of a woman’s lymphocytes to the chlamydial hsp60, the subse-
quent presence of other hsp60-producing bacteria in her fallopian tubes may trigger a
reactivation of hsp60-sensitized lymphocytes and further exacerbate tissue destruction.
This mechanism offers an explanation for the observation that no bacterial pathogen
is detected in 30% of women with pelvic inflammatory disease (63). Additional studies
(summarized in reference 64) highlighted the presence of immunity to the conserved
chlamydial hsp60 epitope 260 to 271 in women from Hungary, Sweden, and France
who had blocked fallopian tubes or an ectopic pregnancy. However, the precise
variables that facilitate the induction of cross-reactive immunity to the human hsp60 in
individual women as a consequence of chlamydial persistence still remain incompletely
determined.

A number of studies have shown that both humoral and cell-mediated immune
responses to the chlamydial hsp60, as well as the generation of immune responses that
recognize the human hsp60, contribute to the pathogenesis of a chlamydial genital
tract infection (65–68). It should be noted that when C. trachomatis was added to a
fallopian tube organ culture, only minimal damage was noted (69). Exposure to the
chlamydial hsp60 induces strong cell-mediated and humoral immune responses in
animal models of chronic pelvic inflammatory disease (68). Animals that had been
previously sensitized to C. trachomatis developed inflammation of their fallopian tubes
after a subsequent exposure to recombinant chlamydial hsp60 (70). This indicates that
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the chronic release of chlamydial hsp60 by RBs while in a persistent state may mediate
fallopian tube inflammation. Ultimately, sufficient damage and scar formation will result
in tubal occlusion and infertility. It has been suggested that detection of circulating
antibodies to the C. trachomatis hsp60 is the most sensitive test, even better than a
hysterosalpingogram, for diagnosing chlamydia-related tubal factor infertility (71). The
correlation between antibody and cell-mediated immune responses to the chlamydial
hsp60 and the occurrence of pelvic inflammatory disease, tubal occlusion, infertility,
and ectopic pregnancy in women from a number of different countries has been
reported (66, 72–76). This reinforces the probable validity of immunity to hsp60 as a
major factor in chlamydial pathogenesis.

Women who are infertile due to occluded fallopian tubes now seek to become
pregnant by in vitro fertilization and embryo transfer (IVF-ET). There is a multitude of
accumulating evidence, however, that immunity to the chlamydial hsp60 and/or to
epitopes shared with the human hsp60 reduces success following this procedure.
hsp60 is one of the first proteins expressed by early-stage embryos (77). A study
utilizing in vitro-cultured mouse embryos demonstrated that treatment with monoclo-
nal antibodies to hsp60 resulted in a failure to progress (78). This established that hsp60
was present on the cell surface of early embryos and was accessible to antibody
binding. The addition of chlamydial hsp60 to a trophoblast cell line was shown to
induce apoptosis; this response was abrogated by the addition of monoclonal antibody
to TLR 4 (79). Thus, while most women undergoing IVF-ET have no evidence of a
cervical chlamydial infection by culture or gene amplification assays, this observation
suggests that the presence of a persistent chlamydial infection in some of these women
and the release of the chlamydial hsp60 could, by inducing trophoblast apoptosis,
contribute to pregnancy failure by disrupting formation of the placenta. The presence
of antibodies to the chlamydial hsp60 in the cervixes of women undergoing IVF-ET has
been correlated with a failure to achieve a detectable uterine implantation or to only
transient implantation that is soon lost (80). In another study, follicular fluid taken
during an IVF-ET cycle that was positive for chlamydial hsp60 was associated with a
diagnosis of tubal factor infertility and with subsequent low implantation rates (81). The
detection of antibodies directed against a conserved hsp60 epitope shared by the
chlamydial and human hsp60 has been associated with a lower spontaneous concep-
tion rate and a higher rate of adverse pregnancy outcome (67). In contrast, a recent
study of women with recurrent miscarriage showed no significant difference in the
prevalence of antichlamydial hsp60 antibodies between women with or without this
occurrence (82). Since a spontaneous pregnancy loss may be due to many diverse
factors, this failure of a significant association with hsp60 was not surprising.

There are conflicting reports on the influence of C. trachomatis on pregnancy
outcome in women with spontaneous conceptions. In addition to individual variations
in factors associated with chlamydial persistence, as mentioned above, whether or not
the infection occurred during the index pregnancy is another important variable that
has not always been taken into consideration. An ascending chlamydial infection
during pregnancy has been associated with a number of deleterious conditions,
including premature rupture of membranes, chorioamnionitis, preterm labor, neonatal
infections, and postpartum endometritis (83–85). Pregnancy is associated with an
upregulation of autophagy in the mother in response to the preferential draining of
nutrients by the developing fetus (86). In women harboring a persistent chlamydial
infection, this may increase nutrient availability and favor the resumption of RB
replication and reappearance of an active infection. Elevated levels of progesterone
during gestation may also impact chlamydial growth by an as-yet-undetermined
mechanism. The extent to which immunity to hsp60 may contribute to complications
of ongoing pregnancies in chlamydial antibody-positive women remains largely unex-
plored.

It is clear that the consequences of a C. trachomatis infection differ greatly between
individual women. Despite expanded efforts to diagnose and treat chlamydial genital
tract infections in young women, the number of reported cases has been increasing
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(87). Efforts to develop an effective vaccine against chlamydial infections have also
encountered significant roadblocks (88). While our knowledge of the factors utilized by
this organism to persist and cause disease has progressed at a high rate, a more
thorough elucidation of host variables that influence disease acquisition and persis-
tence remains to be accomplished. A more complete understanding of the differences
between women in terms of factors that influence the consequences of a chlamydial
genital tract infection and utilization of this knowledge will lead to the development of
more individualized and more focused treatments, thereby reducing the occurrence of
adverse outcomes.
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